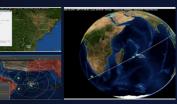
COMMAND PROFESSIONAL EDITION

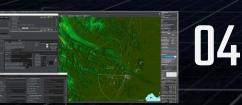
-

SATELLI


WHAT IS COMMAND PROFESSIONAL EDITION?

CMANO / CMO

Command PE is based on the commercial software titles


- Command: Modern Air/Naval Operations and its successor,
- Command Modern Operations

Product

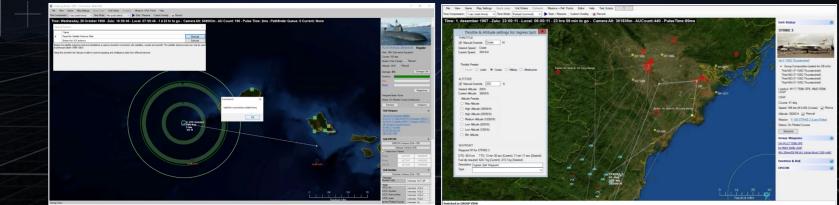
Whole earth, Physics-based Battlespace Simulation; all-domain with emphasis on Air and Maritime

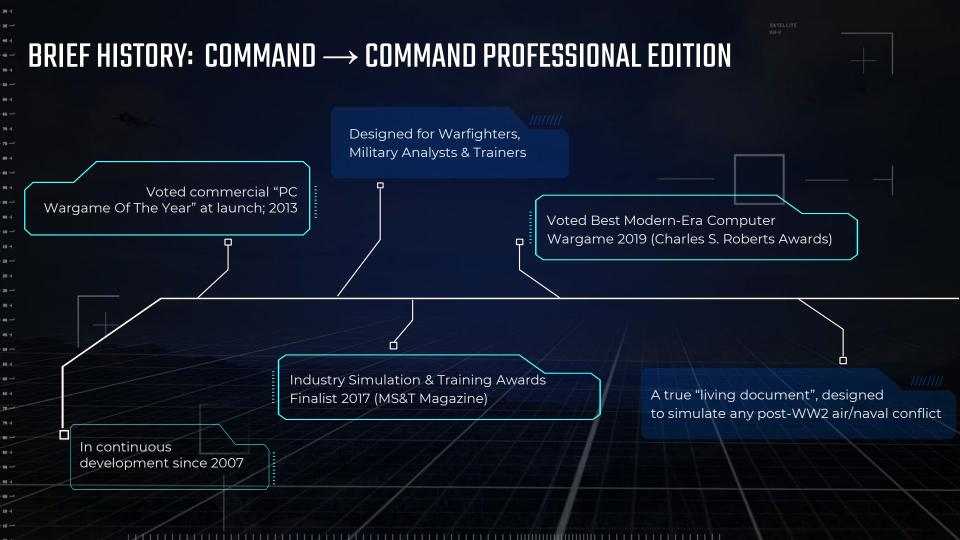
03

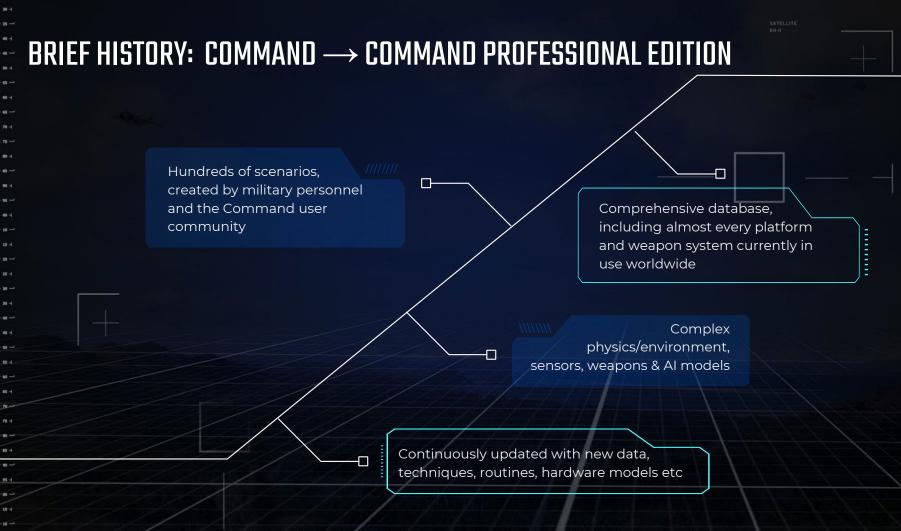
02

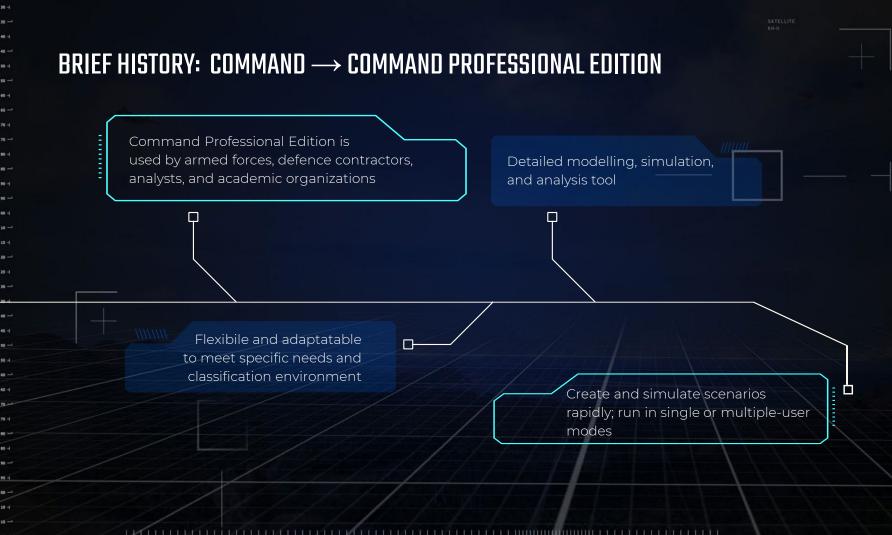
Industry

Used by the world's largest defence contractors to test concepts and create scenarios to demonstrate capabilities


Military


Used in 25+ Nations for Analysis, Training, and Education; rapidly create scenarios to test capabilities, tactics, strategies and individual/staff performance


COMMAND PROFESSIONAL EDITION – WHOLE EARTH & ALL DOMAIN


- All-domain, Physics-based battlespace: Air, Sea, land, space and cyber effects
- SRTM-3 data (DTED Level 1) and 450m²/cell bathymetry
- Database of the world's frontline Air and Maritime equipment from 1946 to near future (all editable)

COMMAND PE BUILDS ON TOP OF COMMERCIAL COMMAND

Added-value features for the military, industry and academic professionals

Praised by the pros: "half the time and cost" — Dstl

USED & TRUSTED WORLDWIDE

Armed forces and defence industry of over 23 Nations use Command PE for analysis, planning, training and education

NATO

OTAN

KA

MITSUBISHI

۲

Strategic

Command

90 -i

25 -

H -1

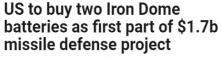
45 -1

50 ---55 -l

60 ----

65 -1

75 -1


HC -1

Air Force Cancels HCSW Hypersonic Missile in Favor of ARRW

Feb. 10, 2020 | By John A. Tirpak

The Air Force has notified Lockheed Martin it has cancelled the Hypersonic Conventional Strike Weapon as of Feb. 10, in favor of the AGM-I83 Air-Launched Rapid Response Weapon. The cancellation is not because of poor performance but because of other "budget priorities," the service said.

ARRW is the only hypersonic prototyping effort USAF is funding this year, service spokeswoman Ann Stefanek told reporters. Lockheed Martin Space in Huntsville, Alabama, is the prime contractor for HCSW, while Lockheed Missiles and Fire Control in Orlando, Florid is the prime for ARRW.

Systems to be deployed next year; \$373m. purchase could lead to far bigger deal if Israeli system proves able to defeat more complex threats than it was originally designed for

FULLY EDITABLE, OPEN SOURCE DATABASE 4.200+ 4.900+ ships 770+ 166 propulsion systems satellites • 540+ 7.200+ aircraft comm/datalink types **33.900+** loadouts 4.300+ 1.400+• & facilities warheads 7.300+ sensors 160+ 4.400+• aircraft facility types weapons all at your fingertips "As of July 2024

30 1

40 -1 45 -

60 -1

65 ----

70 -1

75 -

90 H

15 -1

25 -

35 -1

45 -1

SE -1

65 -1

FULL DATABASE EDITOR

30 1

48.4

45 ---50 -1

60 -i 65 -70 -i

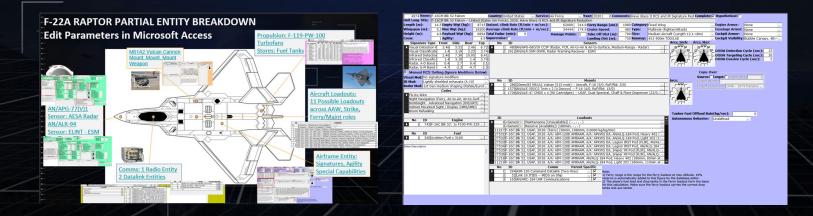
75 --80 -i

90 H

95 -

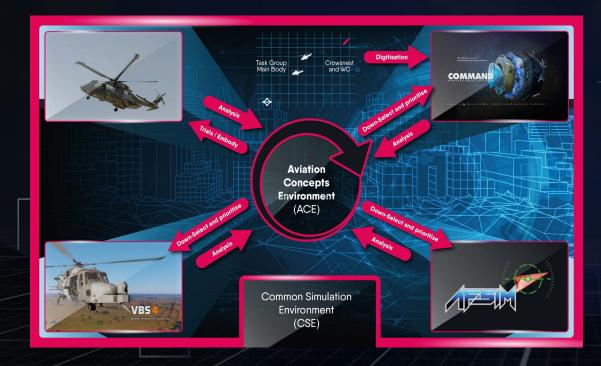
66 -i

15 -1


25 -l 30 -

36 -1

45 -1


1- 22

65 -1

COMMAND IN THE ACQUISITION PROCESS

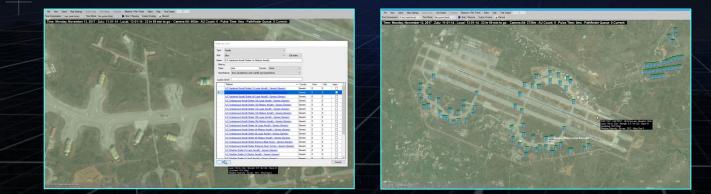
Digitise and test the value of ideas/concepts in Command PE before advancing them for validation in higher fidelity, but slower to use tools

SATELLITI

MULTIPLAYER

Realtime Multiplayer via server-client model

2-16 players including friendly, hostile, allied and commercial sides as well as umpire and observer modes.


Use your way - in unclassified or classified environments and with the server and clients on premises or in a cloud environment

SATELLITE

RAPID SCENARIO DEVELOPMENT

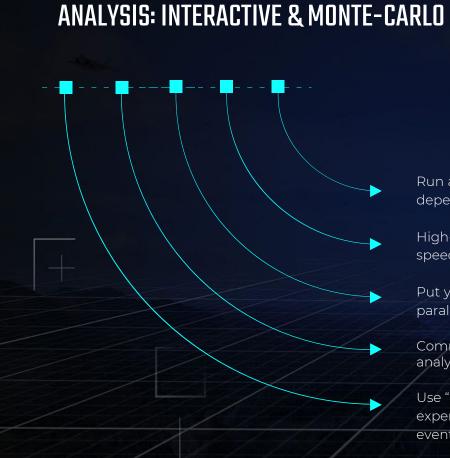
Powerful, GUI-driven integrated scenario editor allows creating elaborate scenarios in minutes Save & re-use sprawling facility installations or nationwide defence complexes - or batchimport from your own data Turbocharge creation speed with parallel development & scenario merging

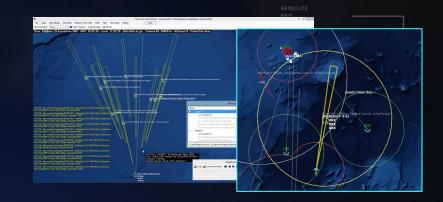
"Wargaming with Command is an Order of Magnitude faster than our previous tool."

ON-DEMAND FREE & COMMERCIAL IMAGERY

Bring your virtual battlespace to life with real-world imagery

Use publicly available, or commercial imagery sources, or utilise your own private datasets


Place facilities at their real-life coordinates with ⁻ pinpoint accuracy



Available Sources: MS Bing Maps, or any OpenStreetMapcompliant map source

Interfaces to additional sources can be implemented (e.g. Google Maps)

Run any scenario 10 times or 100,000 times depending on need

High-performance simulation engine generates speedy results

Put your multicore supercomputer to good use with parallel execution

Command Line Interface for superfast automated analysis

Use "butcher's bill" to assess losses and weapon expenditures, or drill-down deeper to examine events and their causes

EVENT EXPORT

Г

Export Data Types:

• XML

30 1

48.4

60 -i

65 -

80 -i

es ---

90 H

15 -1

25 -1

30 ---

35 -1

45 -1

50 ---

55 -1

65 -1

- CSV
- MS-Access
- SQL-Server and SQLite

<u>3D viewers</u>

- TacView
- SIMDIS

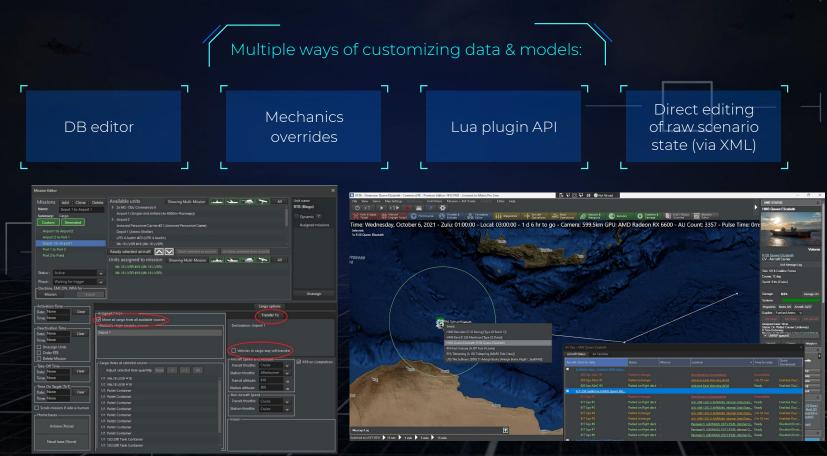
Analyse "Human Readable" data:

- unit positions & movements
- fuel consumption
- weapon endgame events
- units hit/destroyed
- fuel transfer
- sensor detection and more

WeaponSide I	ParentFiringUnit	FargetName	TargetSide	TargetLon	TargetLat	TargetAlt	TargetAlt	Distance	Result	EndgameMessage
	Name					_ASL_m	_AGL_m	FromFiri		
								ngUnit_		
United Kingdom	No. 814 NAS #06	(-239	USSR	-0.9816439	68.729378	-450	2055	1.9953	POINTDEF:FAILURE	Decoy (Generic Acoustic Decoy; Tech: Early 1980s) from K-239 is attempting to seduce sensor: Torpedo Seeker
										(Tech: Late 1980s)(Guiding weapon: Stingray Mod 0 #616). Final probability: 15%. Result: 18 - FAILURE Point
										defence systems on K-239 defeated by weapon Stingray Mod 0 #616
United Kingdom	No. 814 NAS #06	(-239	USSR	-0.9816439	68.729378	-450	2055	1.9953	ніт	Torpedo Stingray Mod 0 #616 is attacking K-239 with a base PH of 80%. Final PH: 80%. Result: 67 - HIT
										Weapon: Stingray Mod 0 #616 has impacted K-239.
United Kingdom	No. 814 NAS #06	(-239	USSR	-0.9978601	68.728697	-52.348	2514.652	0.6376	MISS	All weapon seekers were spoofed - weapon missed target
United Kingdom	No. 814 NAS #06	(-239	USSR	-0.9978601	68.728697	-52.348	2514.652	0.6376	POINTDEF:SUCCESS	Decoy (Generic Acoustic Decoy; Tech: Early 1980s) from K-239 is attempting to seduce sensor: Torpedo Seeker
										(Tech: Late 1980s)(Guiding weapon: Stingray Mod 0 #618). Final probability: 15%. Result: 12 -
United Kingdom	No. 814 NAS #06	(-239	USSR	-0.9978601	68.728697	-116.848	2450.152	2.4629	POINTDEF:FAILURE	No point defence systems employed by K-239 against weapon Stingray Mod 0 #618
United Kingdom	No. 814 NAS #06	(-239	USSR	-0.9978601	68.728697	-116.848	2450.152	2.4629	ніт	Torpedo Stingray Mod 0 #618 is attacking K-239 with a base PH of 80%. Final PH: 80%. Result: 49 - HIT
										Weapon: Stingray Mod 0 #618 has impacted K-239.
USSR 8	330 OKPLVP Det B	5 90 Torbay	United Kingdom	-0.0389	71.000344	-36.8552	2898.145	0.4207	POINTDEF:FAILURE	Decoy (Type 2066 Bandfish; Tech: Early 1970s) from S 90 Torbay is attempting to seduce sensor: Torpedo
										Seeker (Tech: Early 1980s)(Guiding weapon: APR-2 Orlan-M #621). Final probability: 15%. Result: 19 -
										FAILURE Point defence systems on S 90 Torbay defeated by weapon APR-2 Orlan-M #621
USSR 8	330 OKPLVP Det B	5 90 Torbay	United Kingdom	-0.0389	71.000344	-36.8552	2898.145	0.4207	HIT	Torpedo APR-2 Orlan-M #621 is attacking S 90 Torbay with a base PH of 75%. Final PH: 75%. Result: 23 - HIT
			-							Weapon: APR-2 Orlan-M #621 has impacted \$ 90 Torbay.

SATELLIT KH-H

EDIT & CUSTOMIZE THE SIMULATION


30 11

90 -i

H -1

- 22

6K -1

PLUG-IN YOUR OWN MODEL: MECHANICS OVERRIDES

X Tacview-Demo-Ironhand-A-10A-M02.txt.acmi - Tacview Professiona E-16C Fighting Falcon (Pilot) 54-8 Gecko (9433 1233 🔍 🖪 🖉 🖓 🕿 2 000 ASL Altitude (m) TAS (km/h) 1 000 Value Unit Data 0.0 * 1 500 HDC 109.1 HDG . TRK 109.7 TRK 1 000 TAS 736.8 km/h TAS 0.0 km/b 500 IAS IAS - km/h - km/h Time Mach 0.60 Mach 0.00 13:59:59 14:04:59 ASL 519.6 m ASL 246.9 m -500 F-16C (Pilot1) AoA (0.8) * 404 (0.5) a (0.0) a F-16C Fighting Falcon (Pil... • 15.3 km / 110.1°L SA-8 Gecko (9433) 0.0 % PPT 4.4 °/s RRT TPT 0.2 % TRT · */s TRD km Type F-16C (Pilot2) has taken off from Saki Airbas E-16C (Dilot1) has taken off from Saki Airbare E-16C (Pilot2) has fired AGM-88 4:04:41 SA-15 has been hit by AGM-88 (Pilot2 14:04:41 SA-15 has been destroyed by E-16C (Pilot2 14:04:55 E-16C (Pilot1) has fired AGM-88 14:04:55 (+00:04:55) Flight L 10/22/2016 9:19:01 PM: Weapon: AIM-120C-7 AMRAAM P3I.3 #22 is attacking MiG-29SMT Fulcrum C with a base PH of 95%. ***AMRAAM PK OVERRIDE ACTIVE*** Weapon is AIM-120A/B/C and target is MiG-29; using override. Inputs for high-fidelity model: Weapon speed: 2500 kts. Target

speed: 724.8661 kts. Impact angle: 91.65361 deg. Calling

external DLL..... Result: 82% probability.

Final PH: 82%. Result: 92 - MISS

30 11

48.4

45 ----

60 1

70 -1

90 H

60 H

16 -i

Create and edit your own models & mechanics using Mechanics overrides, in-code, or remote connection to Lua API.

Overrides configurable per session - Additional methods can be added on request.

PHYSICS-BASED SENSORS AND PROPULSION

Physics-based simulation using open-source algorithms

USAF Classified Verification and Validation testing (sensors and propulsion)

- Real-world propagation algorithms
- 3D and 2D Radar Cross Section signatures
- Propulsion calculations include altitude and throttle settings

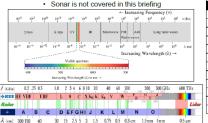
Physics-Based Movement

- · Movement in 5-dimensions (3D + Pitch & Role) & time
 - Platforms (e.g., aircraft, missiles, etc.) <u>DO NOT</u> teleport
 - Displacement, velocity, and acceleration of a platform are all coupled and a function of time
 - Acceleration/deceleration are a function of engine/fuel performance and platform weight/drag
 - · Multiple throttle settings with manual override
 - Increases in platform weight (i.e., cargo & munitions) result in decreased range and increased fuel consumption

Signature/Sensor Relationship

30 11

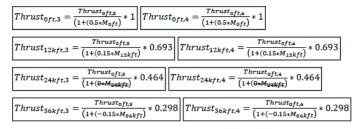
48.4


45 ---50 -1

60 1

1- 22

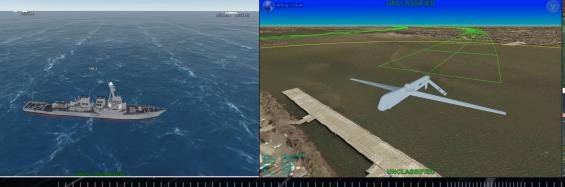
6K -1


- In C:Pro sensors' use a system's signature(s) to detec & classify/identify systems at a distance from the sensor
 - There are 4 main types of signatures, Visual, Infrared, Radar & Sonar

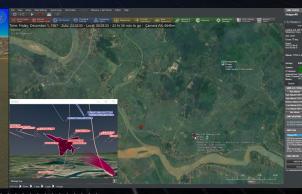
Visual Light	~
Near IR (0.75-8 µm)	~
Far IR (8-1000 µm)	~
	\sim
Search/Track Frequencies	
A Band (30-250 MHz) [Old P Band (HF)] 100-3
B Band (250-500 MHz) [Old P Band (VH	IF)] 60
C Band (500-1000 MHz) [Old L Band (U	JHF)] 6
D Band (1-2 GHz) [Old L Band] 15-30 c	m
E Band (2-3 GHz) [Old S Band] 10-15 c	m ,
F Band (3-4 GHz) [Old S Band] 7.5-10 (cm 🕓
G Band (4-6 GHz) [Old C Band] 5-7.5 d	m 🔹
H Band (6-8 GHz) [Old C Band] 3.75-5	cm 🕔
I Band (8-10 GHz) [Old X Band] 3-3.75	cm .
J Band (10-20 GHz) [Old X Band] 1.5-3	cm .
K Band (20-40 GHz) [Old Ku Band] 0.75	
L Band (40-60 GHz) [Old Ka Band] 5-7.	5 mm ,
M Band (60-100 GHz) [Old V/W Band] 3	3-5 mm

TEMPETER ENDER FOR THE FEATURE

- The Thrust of an engine is <u>calculated</u> (i.e., interpolated ratio) in the C:Pro database for the following conditions:
 - Operation at 0ft, 12kft, 24kft, & 36kft
 - Mach 0.0 (i.e., static thrust test stand configuration)
 - Military and afterburner throttle settings (TS #3 & 4 respectively)

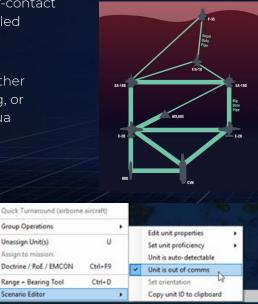


RICH 3D VISUALIZATION - EXPANDED OPTIONS


Export simulations to Tacview, SIMDIS or ANY DIS-compatible viewer for comprehensive, all-aspect 3D view of the battlefield

Stand back and observe the big picture, or zoom-in for more detail or pan from a different angle to view a new perspective Go forwards or backwards in time to observe trends and identify subtle factors

After-action and real-tlme modes supported


COMMUNICATIONS JAMMING & DISRUPTION

How well can your forces operate in the dark?

Communication jamming & disruption and out-of-contact units explicitly modelled

Execute in different ways: either broadly via comms jamming, or more specifically through Lua scripting e.g. cyber/network attack!

Damag	ge: 0%			
Name	10	Status		^
	AN/VPS-2 Search/Track [Mk16 CWIS]		Operational	
8	Comms & Datalinks	8		1.00
	LAMPS III Ship Datalnik		Destroyed	
	VHF Radio [Secure]		Damaged	
	Look 11		Destroyed	
	AN/WSC-3 FLTSATCOM SHF Shipboard Transceiver		Damaged	
	Link 14		Damaged	
	AN/SRR-1		Destroyed	
	UHF Radio (Secure)		Damaged	
	Docking Facilities	8		
	Davit (2x Very Small Dock/Davit (0-11m Long))		Operational	
	Air Facilities	8		
	Pad with Haul-Down (1x Medium Arcraft (12.1-18m Long))		Operational	- 18
	Hangar (2x Medium Aircraft (12.1-18m Long))		Operational	
8	Engineering / Propulsion	8		~

Units aren't entirely blind: they can still fight alone, but the advantages of teaming are lost and efficiency is severely degraded

> Allows analysis of disrupted comms networks

Coming soon:

- Isolated local area networks and variable. comm quality/data rates
- Override built-in comms • model with external simulations for highfidelity comms (e.g. Exata network simulator)

Scenario Editor

TACTICAL / OPERATIONAL LOGISTICS & CARGO

Get your forces to the theater - and sustain them

Units have finite weapons, fuel & stores - consider your staging ports & bases carefully Rich cargo model places realistic volume/weight/personnel restrictions on your supply chain capacity Amphibious landings and airdrops: Perform multidimensional, multi-domain manouvering to secure your objectives

SATELLITE

DETAILED DAMAGE AND REPAIR

Live to fight another day

All platforms are complex systems made of discrete components, each individually damage or destroyable

Discrete armour levels for hull, superstructure, fuselage, etc. and per-component Surviving units may return to ports/airbases/carriers to repair, refuel and re-arm - but this costs time!

Use Command's built-in ETIC & turn-around estimators, or override with your own data/models

aiiia	ige: 6%			
Nam	e	Status		
1	Mounts	=		
	30mm Gsh-30-1 [150 mds]		Operational	
	BVP-30-26M x 2 [60 Cartridges]	Destroyed	
-	Sensors			
	Slot Back [N-019 Rubin]		Damaged	
	OLS-K [IRST]		Destroyed	
	SPO-15 Beryoza [L-006]		Operational	
	OLS-K [Laser Rangefinder]		Operational	
	Mk1 Eyeball		Operational	
	Comms & Datalinks			
	UHF/VHF Radio [Unsecure]		Destroyed	
	HF Radio [Secure]		Damaged	
-	Engineering / Propulsion	=		
	RD-33 #1		Destroyed	
	RD-33 #2		Operational	

WEAPONS OF THE PRESENT & THE FUTURE

Lasers with multiple subtypes, each with its own capabilities and limitations

Tactical EMP weapons, both omni-directional "grenade" warheads and directional systems like CHAMP

Hypersonics: cruisers and boost-glide vehicles

Railguns and High Velocity Projectiles

LUA SCRIPTING & PLUGIN API

Go beyond the graphical interface

Built-in Lua console provides direct access to the internals of the running simulation

30 1

48.4

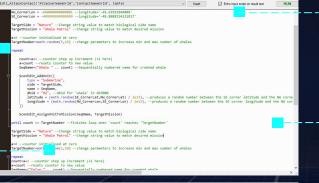
45 ----

60 .4

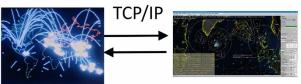
90 H

95 -

60 H


15 -1

35 -1


45 -1

- 22

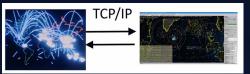
Script commands can be either human or machine-driven (HAL or WOPR/Joshua as adversary!)

TCP/IP socket access to Lua API – remote-control Command from any external console or application

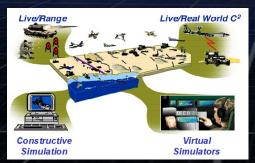
Lua I/O (optional) – use any of Lua's built-in input/output abilities to facilitate information import & export

SATELLITE

INTER-SIMULATION CONNECTIVITY & INTEGRATION


Talks to what you already use

Join existing distributed simulations through DIS (v6 & v7 support)


Complete import/export of scenario state via XML: allows changes to everything

36 -1

Rich event-export framework to output data to other existing systems

TCP/IP socket access to Lua API to control Command from any external console or application

Mechanics Overrides: Use your data & models directly inside Command

Future Growth: HLA, CIGI, other; LVC Integration

